Gi’ Motio

The Future Depends on
Enabling Sustainable
Analytics Governance

How teams maintain structure in analytics
through automated quality enforcement

https://motio.com/

WHITEPAPER | MOTIO

Executive Summary

It is a common misconception that investing in an analytics platform immediately produces better
decisions. Analytics software is necessary, but the organizational commitment doesn’t end there.
Many businesses fail to optimize the benefits of their analytics investments. Organizations that
succeed with analytics succeed because they recognize the delivery of analytics as a complex
process. They adopt the engineering disciplines required to operate analytics at scale.

This paper argues that the moment analytics is developed internally, it becomes a software system
under continuous change. Dashboards, data models, and pipelines behave like software artifacts.
They must be designed, developed, versioned, tested, governed, deployed, and monitored. When
organizations treat analytics as reporting rather than engineering, predictable failure modes emerge
— fragility at scale, loss of trust in numbers, uncontrolled change, and mounting technical debt.

The core thesis is simple: analytics programs fail because systems lack structure.

Drawing on fifty years of software engineering practice, this paper shows how analytics follows the
same evolutionary path and why organizations must adopt engineering frameworks such as SDLC,
DevOps, testing discipline, governance, and agile delivery to achieve reliability and trust. Analytics
Engineering must not be a phrase that sounds foreign. Analytics can and must learn from the
structured success of software development discipline.

Within this framework, QSDA Pro plays a specific and necessary role. It is not intended to replace
analytics tools or governance processes. Instead, it strengthens the engineering system by providing
continuous validation across the build, test, and monitor stages of the analytics lifecycle — where
regression, drift, and silent breakage most often occur. The insights produced by QSDA Pro extend
beyond testing, supporting documentation, governance evidence, and operational confidence.

This paper proceeds in three parts:

¢ First, we examine the origins of analytics and how we arrived at where we are. It explains why
analytics teams unintentionally became software teams without engineering discipline.

e Second, it describes the failure modes that result from treating analytics as craft, with dashboard
jockeys as the artisans of our day.

¢ Third, it presents a unified engineering model for analytics and demonstrates how QSDA Pro fits
within a disciplined system.

The conclusion is not that organizations must become software companies, but that by taking on
analytics, they have become one by default. Businesses must operate like a software development
company if analytics is to be trusted, scalable, and sustainable.

Contents

EXECULIVE SUMMANYiiieiiiiieiiiieieeereeeeeeteeneeeereenseeeeeenssssseensssssennsssssennsssssennsssnns 2
The Classical Management Modelo rreeeeeeeeeeeeeeeeneeeeeeenes 4
Using Data as a Strategic ASSetccciiiiimiiiiiieiiiiiiirricerrreeerreeeeereeeeeeseenesanns 4
Using Bl Teams as SOftware TEAMSceiieeuiiiieeniiiieetnieeiertneeeeeenneeeeeenneeeeessnneeessnnnns 5
The Core Failureottt ce e e e e e s 6
Craft ANAIYLICScceieeeeieiieeecc et e e e e e e e eenee e e e e e eennnsssssssesesnnnnnnns 7
The Limits of Scalabilitycccouuuuiiiiiiicceeeccccer e e e e e e e eaaees 7
DiSCIpling Deferredoeeeeiiiiiieieiiiiiiieteceeeeteeeneeeeeeeeeenaeeeeeeseeennnsssssssssennnnns 8
Technical Debt ...ttt 8
The Face of Technical Debteeeeiiiiiiiiiiiiiiiii e, 8
BUSINESS CONSEQUENCESccuceeunniiennirieneernneeeeneeennieessssessseesssssssssessnssssssssssnnesssnns 9
Velocity Without DIreCtionccceciiiieiiiiiiiccreeeeceeceeeeeeeceeeenneeeeeenneeesennnnnnns 10
Analytics Requires Engineering DiSCIPliNeccoiiiiiiemeiiiiiiiiinencceeniireeeeeceeeeeeeennes 11
Five Operational DiSCIPlINESc... ittt e ereneeceee e seneernneeeennnns 11
SDLC - The Anchor DiSCiplinecccceeeueeeiiiiiiiiiiiiiiinierieecceneeeeeneeeeeeeeeeennnnsenes 12
From SDLC 10 ADLCccuuuiiiiiiiiiitiiiiniittttccen et crenaasees s e e eessassesssseennnnes 13
Where QSDA Pro FitSccciiiiiiiiiiiimiiccciiniinnnne e ceecccceeeeeesasae s 14
QSDA Pro's Role in the Lifecycleccouueeiriiiiiieiiiecceerccceeeceeeeeeceeeeeeeneeeen 14
BeYONd T@SHING ...ccunniiiieieieiiieiceceeeecereeeeeeeeeeeeeeeeneeeeenneneseenssssesenssssssennsssssennnnns 15
Part of a Disciplined Systemcccouueiiiiiiiiiiiiiiiiirrrcceeeeeeeeneeeeeeeeeeennnsssanns 15
FINAl TROUQGRLES ...ttt e ree e e ree e e eaeeeeae s sansesenssssnnsnsennansanes 16

WHITEPAPER | MOTIO

The Classic
Management Model

For most of the twentieth century, management theorists delivered a consistent message to
business leaders: stay true to your core mission. Organizations were advised to focus on what
they did best and avoid drifting into unfamiliar territory. Historical analyses of U.S. corporate
structure show that prior to the widespread adoption of the multidivisional form in the 1950s and
1960s, most large firms operated focused, single-business organizations rather than diversified
conglomerates (Chandler, 1998). Focus was strategic.

60 Years of Development Methods Applied to Analytics

19605-1970s 1980s5-1990s 2000s 2010s-present
‘Waterfall & early QA Spiral & iterative models Agile & C| foundations DevOps & DataOps convergence

e .

‘. — _¢ -

near SDLC, staged releases Risk-driven cycle mental deliveny sorints, conti

Peter Drucker emphasized this discipline. He argued that effectiveness required concentration
rather than diffusion of effort (Drucker, 1954). Michael Porter later framed competitive strategy as
a deliberate choice about what not to do. Prahalad and Hamel formalized the idea through “core
competencies,” defining the capabilities that deserved sustained investment (Porter, 1996). The
message was consistent: organizations succeed by aligning resources tightly to mission and
resisting distractions.

This classical model assumed a boundary between the business and the tools that supported it.
Accounting systems, operational reports, and management information systems existed to serve
the mission. Data was simply a byproduct of operations.

That assumption that business strategy must adhere to a core mission no longer holds.

Using Data as a Strategic Asset

For decades, boardrooms discussed this as: Mission. Vision. Tactics. Execution. Data followed, as
the rear-view mirror of early Bl reports. It documented what had already happened. But once data
was recognized as an asset, the flow reversed. To extract value from data, organizations began
adopting capabilities that had not previously been part of their operating models.

WHITEPAPER | MOTIO

For decades, boardrooms discussed this as: Mission. Vision. Tactics. Execution. Data followed, as
the rear-view mirror of early Bl reports. It documented what had already happened. But once data
was recognized as an asset, the flow reversed. To extract value from data, organizations began
adopting capabilities that had not previously been part of their operating models.

Data and the analytics it required needed more than eyes on. It required systems.

To harness data at scale, businesses began standing up new functions. Bl teams, analytics groups,
and data units. They performed activities historically associated with software development:
requirements gathering, modeling, development, testing, deployment, support, and maintenance. To
make analytics reliable, they adopted behaviors and frameworks drawn directly from software
engineering: SDLC thinking, Agile delivery, DevOps automation, version control, and testing.

By the late twentieth century, data, once thrown overboard as flotsam, had moved below deck and
become the engine itself.

Using Bl Teams as Software Teams

As analytics matured, its artifacts — reports, dashboards, semantic models, and data pipelines —
became no different than those in software development in terms of complexity, risk, and strategic
importance. When numbers drive financial decisions, regulatory reporting, operational performance,
or clinical outcomes, reliability and auditability become critical. The rigor of software engineering
becomes unavoidable.

When data emerged as a strategic asset, most organizations did not respond by hiring software
engineers. Instead, they assigned responsibility to people who already understood the business.
These were Business Analysts, typically in finance or operations. Finance led the way. Analysts were
already comfortable with spreadsheets, formulas, and structured data. They were natural candidates
to build reports, metrics, and dashboards.

The Evolution of Analytics

Bl (Reporting Era) DataOps DevOps Analytics Engineering
Ad hoc dashboards - local logic Pipelines - reproducibility CI/CD - versioning - automation Full software parity

As Bl evolves toward analytics engineering, dashboards and pipelines become software artifacts requiring versioning,
testing, lifecycle management, and governed change control.

WHITEPAPER | MOTIO

These analysts knew the business. They understood the data. What they lacked was any orientation
to the engineering disciplines required to manage complex systems.

They approached Business Intelligence as an extension of reporting. They had little exposure to
SDLC concepts, version control, DevOps practices, formal modeling techniques, metadata
management, governance structures, or testing theory. As a result, Bl teams and the Centers of
Excellence that followed became accidental software teams.

They inherited software development responsibilities without inheriting the frameworks needed
to manage them.

At first, this worked remarkably well. With a small number of pioneers, analytics functions grew
quickly. Early dashboards delivered immediate value. Executives were impressed. Innovation
flourished. But growth eventually plateaued. Systems became owned by too few individuals. (Put in
your ticket; get your report back in a week). Definitions fragmented. Dashboards multiplied. Logic
diverged. Knowledge concentrated in silos. Technical debt accumulated across personal pipelines,
duplicated metrics, and undocumented business rules.

Analytics became software faster than organizations adopted software engineering. The system
became fragile. Consistency eroded. Trust declined. Scaling became difficult. The departure of a
single analyst could destabilize entire reporting ecosystems.

The challenge has been reconciling self-service analytics with a central, disciplined approach. Much
has been written about the fact that analytics needs governance. Even self-service. The question is
how that discipline is operationalized. The following sections examine the failure modes of craft-
based analytics and the engineering frameworks that address them. Later, we discuss how QSDA
Pro is one solution that addresses these disciplines where analytics systems are most vulnerable.

The Core Failure

Initially, the disconnect between software-like processes and the lack of software discipline was
thought to be a people problem. At its root, however, the failure is simple: analytics is treated as a
craft when it must be treated as engineering. It's a process problem.

Craft Analytics

Craft analytics emerges naturally in early analytics programs. A small number of tech-savvy power
users — some companies call these “citizen developers” — with strong domain knowledge, produce
dashboards, metrics, and models through personal technique. Success depends on intuition,
experience, and familiarity with the business rather than on shared process (McConnell, 2004).

In these environments:

Business rules live in analysts’ heads rather than in documented specifications.
Metric definitions evolve informally through conversation and repetition.

Logic is embedded directly into dashboards instead of shared models.

Testing is visual and manual: “Does this look right?”

Changes are made quickly, with limited understanding of the downstream impact.

The outputs are often impressive. Dashboards look polished. Questions get answered. Executives
see value quickly. Early success reinforces the belief that analytics is primarily a matter of individual

skill rather than system design. This is the trap.

The Limits of Scalability

Craft works locally but fails structurally.
Because the process lives in the individual, the
organization inherits the individual’s limitations
along with their strengths.

When analytics remains craft-based:
e Throughput is constrained by individual
bandwidth.
¢ Knowledge concentrates in a small number
of indispensable people.

¢ Logic cannot be reliably reused or extended.

e Consistency depends on who built the
artifact.

o Staff turnover threatens continuity and
trust.

Growth exposes the fault lines. As dashboards
multiply and data sources change, teams spend
more time reconciling numbers, fixing breakage,
and explaining discrepancies than delivering
insight. No two reports can be trusted to have
the same logic. What once felt fast becomes
brittle. What once was flexible becomes fragile.

This is not a failure of talent. It is the
predictable outcome of relying on personal
technique. Analytics programs rarely fail
because teams lack talent; they fail because
organizations treat analytics as reporting
rather than engineering (McConnell, 2004).

Discipline Deferred

As fragility increases, organizations often respond by reframing the problem as a hiring challenge.
Two strategies emerge.

The first is the domain-expert model: hire people who deeply understand the
business and teach them analytics tooling. These individuals excel at
interpretation and context but are rarely equipped to design resilient systems
or manage lifecycle complexity.

The second is the technologist model: hire technically strong developers and
teach them the business. These individuals bring structure and rigor but
struggle to encode domain logic without constant translation.

Both approaches fail for the same reason. They attempt to solve a systemic problem with individual
capability.

Talent scouts tried to find the elusive candidate who embodied domain fluency, analytics skills, and
engineering expertise. It didn't matter if these individuals exist; building an analytics program around
them is neither scalable, sustainable, nor smart. Mature systems do not depend on exceptional
people; they rely on ordinary people supported by dependable processes.

Analytics fails at scale not because organizations lack the right people, but because they lack the
right engineering discipline. That discipline leads directly to the next problem.

Technical Debt

The failure of craft-based analytics does not surface immediately. It's subtle because there are
successes. The water builds up slowly behind the dam. The quiet accumulation of shortcuts,
assumptions, and undocumented decisions. Over time, these decisions harden into a structural
burden that analytics teams must carry forward. The dam bursts when the light of an upgrade or
staffing change shines its light on it. Software engineering has a name for this burden: technical
debt.

In analytics, technical debt is not a metaphor. It is the operating condition.

The Face of Technical Debt

Pressman defines technical debt as the cost incurred when teams optimize early speed at the
expense of long-term maintainability (Pressman & Maxim, 2020). Technical debt in analytics forms
wherever speed substitutes for structure. The “git ‘er done” mentality. It is rarely intentional. It
emerges from reasonable local decisions made without a governing system.

WHITEPAPER | MOTIO

Pressman defines technical debt as the cost incurred when teams optimize early speed at the
expense of long-term maintainability (Pressman & Maxim, 2020). Technical debt in analytics forms
wherever speed substitutes for structure. The “git ‘er done” mentality. It is rarely intentional. It
emerges from reasonable local decisions made without a governing system.

Common manifestations include:

e Multiple, slightly different definitions of the same KPI across dashboards.
e Copied logic instead of a single shared source.

e Hard-coded business rules embedded directly in visualizations.

¢ Dashboards without versioning, lineage, or rollback paths.

e Manual regression testing performed ad hoc.

¢ Data transformations that exist only in personal pipelines.

¢ Proofs of concept that become permanent.

¢ Requirements? We don't have time for that.

Individually, each shortcut seems harmless. Collectively, they form a complicated, interconnected
web no one really understands. Changes in one place ripple unpredictably across the system. Teams
respond by moving cautiously, adding manual checks, and avoiding refactoring altogether. Upgrades
are postponed.

Debt is invisible until it becomes unavoidable.

Business Consequences

Technical debt is often framed as a technical concern. In analytics, its impact is business-facing.

Speed declines. Each new request takes longer because analysts must navigate
(&5 " fragile logic and fear breaking existing work. Delivery slows not because teams
are inefficient, but because the system is unstable.

Meetings shift from decision-making to reconciliation. Confidence in analytics

Trust erodes. Executives receive conflicting numbers from different dashboards.
@ declines, even when the underlying data is sound.

) Cost escalates. Analyst time is consumed by rework, manual testing, and
’ troubleshooting. The organization pays more than once for the same insight
because logic is not reused.

revised definitions — cause unexpected breakage. In regulated environments, this

g Risk increases. Upstream changes — schema updates, new data sources,
creates audit exposure and compliance risk.

WHITEPAPER | MOTIO

indispensable because they alone understand how things work. Their availability,
or lack thereof, becomes an operational risk.

w Talent becomes a bottleneck. A small number of individuals become

These outcomes are the predictable effects of unmanaged technical debt in a system that has
outgrown craft.

Velocity without Direction

In analytics, speed is not inherently beneficial. Velocity without direction ensures only that technical
debt accumulates faster. Agile practices are often introduced to improve speed and responsiveness
in analytics. When supported by an engineering discipline, Agile works. When adopted without it,
Agile accelerates debt (McConnell, 2009).

In analytics environments lacking structure:

¢ Backlogs become holding areas for deferred quality and system-wide rework.

e Acceptance criteria focus on visuals, not correctness or impact. Do the colors match our
branding?

¢ “Done” means delivered, not validated.

¢ Refactoring is postponed indefinitely because it feels risky. It actually is risky.

¢ Sprints optimize for deliverables rather than system health.

Every sprint that ships untested logic or undocumented changes adds compound interest to
technical debt. Speed increases temporarily, but fragility increases exponentially.

This is not a failure of Agile. Agile assumes the presence of engineering discipline — testing, version
control, automation, continuous integration, and shared standards. Without those foundations, Agile
becomes a delivery shortcut rather than a delivery system. The conclusion is consistent across
industries and decades:

When engineering is missing, speed multiplies debt.

As analytics becomes more central to operations, that debt becomes a business liability rather than
a technical inconvenience. There is a cost to carrying debt on the books.

At this point, the pattern is clear. Craft-based analytics does not fail because teams lack intelligence
or effort — it fails because the system itself cannot absorb growth. The grass-roots system cannot
scale. Technical debt accumulates faster than it can be paid down, speed erodes trust, and agility
amplifies fragility. These outcomes are predictable. They are the inevitable result of treating a
software problem as a reporting exercise.

10

WHITEPAPER | MOTIO

The only durable remedy is not better tools or better people, but engineering discipline — the same
set of practices that transformed software development from a fragile craft into a reliable industrial
capability.

Analytics Requires
Engineering Discipline

The failure modes described so far — scale, change, trust — do not stem from analytics being
uniquely difficult. They stem from analytics being treated as something other than what it has
become: a software system undergoing continuous change.

Sommerville emphasizes the point that complex systems require defined processes, controlled
change, and lifecycle discipline (Sommerville, 2016). Analytics is a complex system. It requires the
same response.

This approach deliberately avoids traditional analytics maturity models, which fail to reflect how
capabilities evolve in practice. A deeper treatment of this argument is outside the scope of this

paper.

Five Operational Disciplines

Modern software does not become reliable through any single practice. It becomes reliable when
multiple disciplines reinforce one another across the lifecycle. Analytics is no different.

WHITEPAPER | MOTIO

Five disciplines are consistently employed wherever complex systems are built and maintained:

1.DevOps / DataOps — Automation that reduces manual risk and shortens feedback loops

2.QA & Testing Discipline — Systematic validation that mistakes are caught early and on purpose

3.Governance - Defined ownership, lineage, standards, and accountability

4.Project Management (Agile Delivery Discipline) — Process and structured change

5.Software Development Life Cycle (SDLC) — The integrating framework that ties all stages
together

Each discipline addresses a different failure mode introduced by craft. DevOps accelerates safe
change. Testing enforces intent. Governance preserves consistency. Agile manages uncertainty.
None of these, however, operates in isolation. They form a system. They require an organizing spine.
That spine is the SDLC. Governance does not function as a competing discipline in this model;
rather, it serves as a boundary condition that determines whether these disciplines—SDLC included—
can operate coherently at the enterprise scale.

SDLC - The Anchor Discipline

Among the five disciplines, SDLC provides the structural backbone that connects intent to execution.
It is sometimes misunderstood as a rigid, waterfall-era artifact. In practice, it is neither rigid nor
outdated. SDLC is the organizing discipline that ensures complex systems can grow, change, and
remain trustworthy over time. It is the structure into which DevOps, testing, governance, and
delivery practices naturally fit.

At its core, the SDLC answers a simple question: How does work move from idea to operation without
collapsing under change?

In analytics, the lifecycle is already present, informally:

¢ Questions are asked (requirements)

 Logic is designed (models and transformations)
e Dashboards and pipelines are built

¢ Results are checked - casually

e Content is deployed to users

e Breakage is discovered after the fact

When the SDLC is applied explicitly, it replaces improvisation with intention. Each stage exists to
prevent a known class of failure:

Requirements reduce ambiguity and rework.
Design prevents duplication and drift.
Build enforces consistency and reuse.
Test catches errors before users do.

¢ Deploy controls, change, and preserve lineage.
Monitor ensures systems remain trustworthy over time.

12

Without an SDLC, analytics teams may still perform these activities — but out of order, unevenly, and
without feedback loops. The result is speed early, instability later.

With an SDLC, analytics becomes governable, testable, and scalable.

From SDLC to ADLC

SDLC Loop for Analytics

Requirements

Business questions,
KPls, constraints
Monitor Design

Usage, performance, Data model, logic,
data quality UX pattemns
Y
h 4
Deploy Build

Promote to governed ETL, semantic layer,
environments dashboards
Test

Data checks, logic
validation, regression

The practical consequence of adopting the engineering discipline is an organizational-level
operating-model change.

The success of craft-based analytics depends on exceptional individuals compensating for weak
systems. Engineering-based analytics depends on systems: ordinary people producing reliable
outcomes through a shared process.

This shift changes how success is achieved:

e From individual brilliance to institutional capability.
e From firefighting to controlled change.
e From fragile outputs to durable assets.

The applied structure does not slow analytics down. It makes speed sustainable.

The remainder of this paper examines how this shift works in practice — and where tools like QSDA
Pro fit within it — not as replacements for discipline, but as enablers of it.

WHITEPAPER | MOTIO

Where QSDA Pro Fits

Analytics engineering succeeds or fails at the same pressure points that challenge software
systems: changes introduced during build, assumptions broken during testing, and drift that
accumulates quietly in production. These are not conceptual failures; they are structural ones. QSDA
Pro exists precisely at those points of highest risk.

Rather than redefining analytics practice, QSDA Pro strengthens it by supplying the automated
structural validation that modern analytics systems require but rarely possess. It does not introduce
a new discipline. It operationalizes an existing one.

QSDA Pro as the Continuous Intelligence Layer

| ~Decumentation updates —

{ Requiremants H Dasign]—-[=TT]

h

: = = =Training insights- = = = Training

Test (QSDA Pro)
Continuous Validation

= =Governance evidence = = =

g

Improvement opportunities-k Conlinuous Improvement

QSDA Pro’s Role in the Lifecycle

In an engineering-driven analytics lifecycle, quality cannot be added retroactively. It must be
validated continuously, as changes occur. QSDA Pro enables this by embedding automated analysis
directly into the stages where analytics artifacts are most vulnerable.

During Build, QSDA Pro provides immediate visibility into the internal structure of Qlik applications.
Expressions, variables, data dependencies, and script components are analyzed systematically
rather than reviewed informally. This enables developers and analytics engineers to identify broken
logic, invalid references, and structural inconsistencies early, before they propagate downstream.

During Test, During the testing phase, QSDA Pro functions as an automated regression engine for
Qlik applications. It executes checks against applications and reports errors, failures, or violations. It
evaluates applications against known quality checks and reports newly detected errors or failures as
analytics evolve. QSDA Pro is intended to provide early, objective signals when a change introduces
risk. This replaces manual, error-prone comparison with objective evidence. Testing becomes a
repeatable engineering control.

14

During Monitor, QSDA Pro extends quality beyond release. As applications evolve, upstream
systems change, and business logic is refined, QSDA Pro detects drift — new inconsistencies,
unused objects, and emerging structural risk. This transforms monitoring from reactive
troubleshooting into continuous integrity assurance.

Across all three stages, QSDA Pro supplies something analytics teams have historically lacked:
machine-scale visibility into their own systems.

Beyond Testing

Although QSDA Pro formally operates within the testing domain, its outputs extend well beyond
quality control. By exposing the internal structure of analytics artifacts, it generates durable by-
products that strengthen other engineering disciplines.

¢ Governance support through concrete evidence of definitions, dependencies, and change history

¢ Living documentation derived directly from real applications rather than manually maintained
artifacts

¢ Audit and risk visibility through objective records of validation and structural analysis

o Early technical debt detection, allowing teams to address fragility before it becomes operational
pain

These are not additional features layered on top of testing; they are natural consequences of making
analytics systems observable.

Part of a Disciplined System

QSDA Pro provides structural validation and regression intelligence that enables these processes to
operate reliably at scale.

This distinction is intentional. In mature engineering environments, no single tool carries the burden

of correctness. Stability emerges from systems where people define intent and automation enforces
integrity. QSDA Pro occupies that enforcement role for analytics — quietly, continuously, and without

expanding its scope beyond what engineering discipline demands.

WHITEPAPER | MOTIO

Final Thoughts

Analytics has already crossed the boundary from reporting to infrastructure. Once it becomes
central to decision-making, it inherits the same requirements as any critical software system:
accuracy, repeatability, controlled change, and trust.

The organizations that succeed are not those that build the most dashboards, but those that treat
analytics as an engineered capability. They replace superheroes with systems, intuition with
governance, and inspection with discipline. They recognize that analytics does not fail because
people lack talent, but because systems lack structure.

QSDA Pro exists within this reality. It does not redefine analytics engineering, nor does it substitute
for sound process. It strengthens the disciplines that make analytics reliable by providing automated
structural insight where manual methods inevitably fail.

Analytics has already become software. The only remaining question is whether businesses will
recognize it as such and adopt analytics engineering as a discipline.

Let's talk DevOps
for Qlik.

www.motio.com

+1 (972) 447 - 9595

Request a Demo

https://motio.com/request-a-demo/
https://motio.com/

